
PGI
®

2010 Compilers & Tools

Dave Norton
Dave.norton@pgroup.com
www.pgroup.com

NERSC/OLCF/NICS Cray XT5 Workshop

Lawrence Berkeley National Lab

February 2010

Craig Toepfer
Craig.toepfer@pgroup.com
www.pgroup.com

HPC Hardware Trends
Today: Clusters of Multicore x86
Tomorrow? Clusters of Multicore x86 + Accelerators

Jun-93

Jun-94

Jun-95

Jun-96

Jun-97

Jun-98

Jun-99

Jun-00

Jun-01

Jun-02

Jun-03

Jun-04

Jun-05

Jun-06

Jun-07

Jun-08

Jun-09

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Custom

RISC/UNIX

Vector

Itanium

64-bit x86

32-bit x86

Top

500

PGI Workstation / Server / CDK
Linux, Windows, MacOS, 32-bit, 64-bit, Intel 64, AMD64

UNIX-heritage Command-level Compilers + Graphical Tools

Compiler Language Command
PGF95™ Fortran 95 w/some F2003 pgf95

PGCC® ANSI C 99, K&R C and GNU gcc Extensions pgcc

PGC++ ® ANSI/ISO C++ pgCC

PGDBG ® MPI/OpenMP debugger pgdbg

PGPROF ® MPI/OpenMP profiler pgprof

Self-contained OpenMP/MPI Development Solution

PGI Compilers & Tools

 Compilers & Tools dedicated to scientific computing, where
speed of generated code is #1 criteria

 Are focused around parallel/optimization technologies

 State of the art Local and Global Optimizations

 Superior automatic SIMD vectorization

 Support of the latest OpenMP 3.0 standard

 Automatic loop parallelization for multi-core CPUs

 Whole-program and profile-guided optimizations

 PGI Unified Binary technology to target different flavors of x64
architecture or heterogeneous architectures with a single binary

 Graphical tools to Debug/Profile Multithreaded/Multiprocess applications

 Starting with PGI version 9.0

 PGI Accelerator programming model implementation to address the
GPGPU programming challenge

PGI
®

2010 New Features

 PGI Accelerator™ Programming Model

 High-level, Portable, Directive-based Fortran & C extensions (no C++, yet)

 Supported on NVIDIA CUDA GPUs

 PGI CUDA Fortran

 Extended PGI Fortran, co-defined by PGI and NVIDIA

 Lower-level explicit NVIDIA CUDA GPU programming

 PVF Windows/MSMPI Cluster/Parallel Debugging

 Debug Fortran & C MSMPI cluster applications

 PGI Accelerator and CUDA Fortran support

 Compiler Enhancements

 F2003 – several new language features

 Latest EDG 4.1 C++ front-end – more g++/VC++ compatible

 AVX code generation, code generator tuning

 PGPROF Enhancements

 Uniform performance profiling across Linux, MacOS and Windows

 x64+GPU performance profiling

 Updated Graphical User Interface (GUI)

PGI 2010 Compilers
F2003/C++ Language Support

PGI Fortran 2003 incremental features
 Initial release of PGI 2010: pointer reshaping, procedure

pointers and statement, abstract interfaces, ieee_exceptions

module, ieee_arithmetic module

 Coming later in PGI 2010: Object-oriented features

PGC++/ PGCC enhancements

 EDG release 4.1 front-end with enhanced GNU and Microsoft

compatibility, extern inline support, improved BOOST support,

thread-safe exception handling

Intel AVX Support

Intel Advanced Vector Extensions
 New instructions

 Wider vector registers, up to 2X floating point performance

PGI F03/C/C++ compilers will be ready when

AVX-enabled systems become available

Can run with Intel simulator today
 For those who like to experiment or test for correctness

Invoking AVX on PGI 10.0

• pgfortran –tp sandybridge-64

• GNU Binutils 2.19.51 or newer

• Intel Software Development Emulator

– http://software.intel.com/en-us/articles/intel-software-

development-emulator/

AVX Example: Vector Add

subroutine vadd(a, b, c, n)‏

real a(n), b(n), c(n)‏

integer i, n

do i = 1, n

c(i) = a(i) + b(i)‏

enddo

end

.LB1_477:

vmovups (%r9,%rcx), %ymm0

Vaddps (%r10,%rcx), %ymm0, %ymm1

vmovups %ymm1, (%r8,%rcx)‏

vmovups 32(%r9,%rcx), %ymm0

vaddps 32(%r10,%rcx), %ymm0, %ymm1

vmovups %ymm1, 32(%r8,%rcx)‏

addq $64, %rcx

subl $16, %eax

testl %eax, %eax

jg .LB1_477

x.LB1_438:

movups (%r10,%rcx), %xmm0

movups (%r9,%rcx), %xmm1

addps %xmm0, %xmm1

movups %xmm1, (%r8,%rcx)‏

movups 16(%r10,%rcx), %xmm0

movups 16(%r9,%rcx), %xmm1

addps %xmm0, %xmm1

movups %xmm1, 16(%r8,%rcx)‏

addq

$32, %rcx

subl

$8, %eax

testl

%eax, %eax

jg .LB1_438

FORTRAN SSE AVX

Cross-Platform and Mobile
HPC Development

PGI Workstation
®

on Linux, MacOS & Windows
 Same C, C++, and Fortran compilers on all platforms

 PGI Accelerator support and CUDA Fortran

 MPI, OpenMP, PGDBG
®
, PGPROF

®

Cross-platform licensing
 One license can cover all platforms

 Floating license only

 'Borrow' licensing
 No separate license needed to work off-line on your notebook

 Check out a floating license for your notebook for home or travel

Multicore X64 Performance

SPEC® and SPECfp® are registered trademarks of the Standard Performance Evaluation Corporation (SPEC) (www.spec.org)

Competitive benchmark results stated above reflect results performed by The Portland Group during the week of November 8th, 2009.

The Intel Nehalem system used is a Dell R610 using 2 Intel Xeon X5550 with 24GB DDR3-1333. The AMD Istanbul system is a kit built 2 Opteron 2431

system with 32GB DDR2-800. Since this system is not generally available, the AMD results should be considered estimates.

SPECfp2006

est. 23.7

SPECfp200

6 est. 22.3

SPECfp2006 37.6

SPECfp2006 38.1

http://www.spec.org/

SPEC and the –fast flag

 Earlier version of the SPEC benchmark only allowed 4
compilers flags for the “base” run. To accommodate this PGI
introduced the –fast flag and used that to enable numerically
safe, best practices flags.

 Intel and Pathscale also have convenience flags – but they
differ from PGI in the optimizations they invoke and the side
effects.

 PGI’s –fast is conservative and intended for everyday use. Intel
and Pathscale’s convenience flags are intended to maximize
SPEC performance without causing errors in SPEC codes. For
regular user codes – YMMV

-fast comparison - PGI
• PGI: –fast typically includes these options:

• –O2 Specifies a code optimization level of 2.

• –Munroll Unrolls loops, executing multiple instances of the loop during each

iteration.

• –Mnoframe Indicates to not generate code to set up a stack frame.

• –Mlre Indicates loop-carried redundancy elimination.

• –Mpre Indicates partial redundancy elimination.

These additional options are also typically available when using –fast

for 64-bit targets :

• –Mvect=sse Generates SSE instructions.

• –Mscalarsse Generates scalar SSE code with xmm registers; implies –

Mflushz.

• –Mcache_align Aligns long objects on cache-line boundaries.

• –Mflushz Sets SSE to flush-to-zero mode.

-fast comparison - Intel
• Intel: -fast This option maximizes speed across the entire program.

• Linux: -ipo, -O3, -no-prec-div, -static, and –xHost

• IPO - Interprocedural optimization between files

• NO-PREC-DIV - With some optimizations, such as -xSSE2 (Linux) the compiler

may change floating-point division computations into multiplication by the reciprocal

of the denominator. For example, A/B is computed as A * (1/B) to improve the speed

of the computation.However, sometimes the value produced by this transformation is

not as accurate as full IEEE division. When it is important to have fully precise IEEE

division, use this option to disable the floating-point division-to-multiplication

optimization. The result is more accurate, with some loss of performance.

If you specify -no-prec-div it enables optimizations that give slightly less precise

results than full IEEE division.

• STATIC - Prevents linking with shared libraries – it causes the executable to link all

libraries statically

• PGI Equivalents:

IPO => -Mipa=fast

NO-PREC-DIV => -Mfprelaxed

STATIC => -Bstatic

-fast comparison - Pathscale
• Pathscale: -OPT:Ofast and -Ofast

• The option -OPT:Ofast is equivalent to

-OPT:roundoff=2:Olimit=0:div_split=ON:alias=typed.

• -Ofast is equivalent to

-O3 -ipa -OPT:Ofast -fno-math-errno.

“With‏-O3 -OPT:Ofast and -Ofast,‏you‏should‏look‏to‏see‏if‏the‏results‏are‏accurate.”

NO-MATH-ERRNO – turns off IEEE floating point error exception handling

ROUNDOFF=2 – allows for fairly extensive code transformations that may result in

floating point round off or overflow differences in computations

DIV_SPLIT=ON – Allows conversion of x/y into x*(recip(y)) => less accurate

ALIAS=TYPED – Assumes‏that‏pointers‏don’t‏point‏to‏the‏same‏memory.

IPA – Interprocedural analysis

-O3 – additional optimizations that may or may not result in improved performance and

may or may introduce numerical errors.

PGI Equivalents:

NO-MATH-ERRNO => -Knoieee

ALIAS=TYPED => -Msafeptr

-O3 – includes zero cost exception handling -=> -zc_eh

Optimized SPEC
• Code: Leslie3D

• Base flag: -fast –Mipa=fast,inline

• Base performance: 350s

• Optimized flag: -fast –Mipa=fast,inline -Mvect=fuse

• Optimized performance: 327s

• Reason the code runs faster: Fuses loops together for increased

vectorization.

Optimized SPEC
• Code: Hummer

• Base flag: -fast -Mipa=fast,inline

• Base performance: 402s

• Optimized flag: -fast –Mipa=fast,inline -Msafeptr

• Optimized performance: 383s

• Additional flags: -Mvect=partial

• Additional flags performance: 297s

• Reason‏the‏code‏runs‏faster:‏‏Once‏the‏compiler‏knows‏that‏pointers‏don’t‏

overlap, it can vectorize the code for better performance

• Reason additional flag: runs faster: Loop has conditionals in it which.

Compiler‏does’t‏generally‏vectorize‏these‏types‏of‏loops‏as‏metrics‏show‏it‏

often‏isn’t‏helpful.‏‏However‏– in the case of this code it is beneficial.

Optimized SPEC
• Code: MCF

• Base flag: -fast –Mipa=fast,inline

• Base performance: 573s

• Optimized flag: -fast –Mipa=fast,inline –Msmartalloc=huge

• Optimized performance: 282s

• Reason the code runs faster: Code allocates a large block of memory at

initialization and then manages that memory itself

Optimized SPEC
• Code: Gromacs

• Base flag: -fast –Mipa=fast,inline

• Base performance: 620s

• Optimized flag: -fast –Mipa=fast,inline -Mfprelaxed

• Optimized performance: 400s

• Reason the code runs faster: Code does less precise arithmetic then then

IEEE standard. This reduction results in improved performance while not

causing enough loss of precision to effect the programs answers

substantially.

22

Important PGI Compiler Options
-fast Includes‏“-fast –Mvect=sse -Mcache_align –Mnoframe

-Mlre”

-Mipa=fast Enable inter-procedural analysis (IPA) and optimization

-Mipa=fast,inline

Enable IPA-based optimization and function inlining

-Mfprelaxed Reduced precision arithmetic operations

-Minline Inline functions and subroutines

-Mconcur Try to auto-parallelize loops for SMP/Dual-core systems

-mp[=align] Process OpenMP/SGI directives and pragmas

-mcmodel=medium

Enable data > 2GB on AMD64/EM64T running 64-bit Linux

-Minfo Compile-time optimization/parallelization messages

-Mneginfo Compile-time messages indicating what prevented an optimization

-help Compiler options and usage

–fast –Mipa=fast -Minfo usually best for “compile-and-go”

Byteswapio Optimization

 ORIGINAL

 Open(200,status='new',file='binary.data',

 & form='UNFORMATTED',

 & recl=numdouble*8, access='direct')

 write(200,rec=1) doublearray

 Close(200)

 MODIFIED

 Open(200,status='new',file='binary.data',
 & form='UNFORMATTED',

 & recl=numdouble*8, access='direct')

 istat = setvbuf(200,0,numdouble*8,user_buf)

 write(200,rec=1) doublearray

 Close(200)

• Use setvbuf to override default runtime buffer

settings.

• On the XT5 setvbuf preferred over setvbuf3f.

• See the fortran reference manual for more

info.

Availability and
Additional Information

 PGI 2010 Compilers & Tools – available now! See
www.pgroup.com for details

 PGI Accelerator programming model – supported for x64+NVIDIA
targets in the PGI 2010 F95/03 and C99 compilers, available now;
see http://www.pgroup.com/accelerate for a detailed specification,
FAQ and related articles and white papers

 CUDA Fortran – supported on NVIDIA GPUs in PGI 2010 F95/03
compiler; see http://www.pgroup.com/resources/cudafortran.htm for
a detailed specification

http://www.pgroup.com/
http://www.pgroup.com/accelerate
http://www.pgroup.com/resources/cudafortran.htm

Task Example

Uses OpenMP 3.0 tasks

•Actual use by PGI compiler when specifing the –

Mcuda=emu compiler option(CUDA Fortran

emulation mode)

•Analogous to the thread execution control unit on

NVIDIA GPUs

What is the PGI Accelerator
Model?

• High-level, Portable, Directive-based Fortran & C

extensions (no C++, yet)

• Supported on NVIDIA CUDA enabled GPUs

• Supported on Linux, MacOS and Windows

What is CUDA Fortran?

• CUDA Fortran is an analog to NVIDIA's

CUDA C language

• Co-defined by PGI and NVIDIA, implemented in

the PGI 2010 Fortran 95/03 compiler

• Supported on Linux, MacOS and Windows

• CUDA Fortran gives HPC developers direct

control over all aspects of GPU programming

PGI Accelerator vs CUDA Fortran?

 The PGI Accelerator programming model is a high-level implicit
model for x64+GPU systems, similar to OpenMP for multi-core

– Supported in both the PGI F95/03 and C99 compilers

– Offload compute-intensive code to a GPU accelerator using directives

– Programs remain 100% standard-compliant and portable

– Makes GPGPU programming and optimization incremental and
accessible to application domain experts

• CUDA Fortran is a lower-level explicit model for direct control of:

– Splitting source into host code and GPU kernel subroutines/functions

– Allocation of page-locked host memory, GPU device main memory, GPU

constant memory and GPU shared memory

– All data movement between host memory and GPU memory hierarchy

– Definition of thread/block grids and launching of compute kernels

– Synchronization of threads within a CUDA thread group

– Asynchronous launch of GPU kernels, synchronization with host CPU

– All CUDA Runtime API features and functions

